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Abstract 
 
    The purpose of the PAPI project is to specify a standard application programming 
interface (API) for accessing hardware performance counters available on most modern 
microprocessors. These counters exist as a small set of registers that count events, which 
are occurrences of specific signals and states related to the processor’s function. 
Monitoring these events facilitates correlation between the structure of source/object code 
and the efficiency of the mapping of that code to the underlying architecture. This 
correlation has a variety of uses in performance analysis including hand tuning, compiler 
optimization, debugging, benchmarking, monitoring and performance modeling. In 
addition, it is hoped that this information will prove useful in the development of new 
compilation technology as well as in steering architectural development towards 
alleviating commonly occurring bottlenecks in high performance computing. 

  
1 Introduction 
 
    For years collecting performance data on applications programs has been an imprecise 
art. The user has had to rely on timers with poor resolution or granularity, imprecise 
empirical information on the number of operations performed in the program in question, 
vague information on the effects of the memory hierarchy, etc. Today hardware counters 
exist on every major processor platform. These counters can provide application 
developers valuable information about the performance of critical parts of the application 
and point to ways for improving the performance.  Performance tool developers can use 
these hardware counters to develop tools and interfaces that users can insert into their 
applications. The current problem facing tool developers is that access to these counters 
is poorly documented, unstable or unavailable to the user level program. The focus of 
PAPI is to provide an easy to use, common set of interfaces that will gain access to these 
performance counters on all major processor platforms, thereby providing application 
developers the information they may need to tune their software on different platforms. 
Our goals are to make it easy for users to gain access to the counters to aid in 
performance analysis, modeling, and tuning. 

                                                
♦  This work was partially supported by ERDC MSRC under prime contract #DAHC94-96-C-0002, by ARL 
MSRC under prime contract #DAHC94-96-C-0010, by ASC MSRC under  prime contract #DAHC94-96-
C-0005, and by NSF PACI under Cooperative Agreement #ACI-9619019. 
* Computer Science Department, University of Tennessee, Knoxville, TN 37996 
+  Computer Science Department, University of Tennessee, and Oak Ridge National Laboratory 
 
 
 



 
    PAPI provides two interfaces to the underlying counter hardware: a simple, high-level 
interface for the acquisition of simple measurements and a fully programmable, thread 
safe, low-level interface directed towards users with more sophisticated needs. The low-
level interface manages hardware events in user defined groups called EventSets. The 
high-level interface simply provides the ability to start, stop and read the counters for a 
specified list of events. PAPI attempts to provide portability across operating systems and 
architectures wherever possible and reasonable to do so. PAPI includes a predefined set 
of events meant to represent a lowest common denominator of a ‘good’ counter 
implementation, the intent being that the same tool would count similar and possibly 
comparable events when run on different platforms. If the programmer chooses to use 
this set of standardized events, then the source code need not be changed and only a 
recompile is necessary. However, should the developer wish to access machine specific 
events, the low-level API provides access to all available native events and counting 
modes.  

    In addition to raw counter access, PAPI provides the more sophisticated functionality 
of user callbacks on counter overflow and hardware based SVR4 compatible profiling, 
regardless of whether or not the operating system supports it. These features provide the 
necessary basis for any source level performance analysis software. Thus for any 
architecture with even the most rudimentary access to hardware performance counters, 
PAPI provides the foundation for truly portable, source level, performance analysis tools 
based on real processor statistics.  

   
2 Discussion of PAPI Metrics 
 
     Through interaction with the high performance computing community including 
vendors and users, the PAPI developers have chosen a set of hardware events deemed 
relevant and useful in tuning application performance.  This section provides justification 
for the choice of the PAPI predefined events and discusses how performance data 
collected about these events can be used to optimize the performance of applications.  
The complete list of PAPI predefined events can be found in Appendix A.  These events 
may differ in their actual semantics on different platforms, and all events may not be 
present on all platforms.  However, it is hoped that most of these events will be made 
available in the future on all major HPC platforms to improve the capability for tuning 
applications across multiple platforms.  The predefined events include accesses to the 
memory hierarchy, cache coherence protocol events, cycle and instruction counts, and 
functional unit and pipeline status.  Each of these areas is discussed in greater detail 
below, along with a discussion of how the metrics in each area relate to application 
performance tuning.  Background on architectural issues discussed in this section can be 
found in [3,7]. 
 
    Because modern microprocessors have multiple levels in the memory hierarchy, 
optimizations that improve memory utilization can have major effects on performance.  
Levels of the memory hierarchy range from small fast register memory to larger slower 
levels of cache memory to still larger and slower main memory.  Different levels of cache 



memory may have separate instruction and data caches or may consist of a unified cache 
that buffers both instructions and data in the same cache.  Most modern microprocessors 
have two levels of cache, although some now have three levels (e.g., three levels are 
optional with the Compaq EV5 and EV6 architectures).  A load or store instruction 
generates a memory addressing process that first attempts to locate the addressed memory 
item in the L1 cache.  If the item is present in the L1 cache, the result is an L1 cache hit.  
If the item is not present, the result is an L1 cache miss and an attempt is next made to 
locate the item in the L2 cache, with the result being an L2 cache hit or miss.  The 
operating system uses main memory as a cache for a larger virtual address space for each 
process and translates between virtual addresses used by a program and the physical 
addresses required by the hardware.  Memory is divided into blocks called pages.  To 
keep the overhead of address translation low, the most recently used page addresses are 
cached in a translation lookaside buffer (TLB).  When a program references a virtual 
address that is not cached in the TLB, a TLB miss occurs.  If in addition the referenced 
page is not present in main memory, a page fault occurs.  The latency of data access 
becomes greater with each level of the memory hierarchy, with a miss at each level 
multiplying the latency by an order of magnitude or more.  For example, the latencies to 
different levels of the memory hierarchy for the MIPS R10000 process in the SGI Origin 
2000 are shown in Table 1 [4]. 
 
CPU register 0 cycles 
L1 cache hit 2 or 3 cycles 
L1 cache miss satisfied by L2 cache hit 8 to 10 cycles 
L2 cache miss satisfied from main 
memory, no TLB miss 

75 to 250 cycles 

TLB miss requiring only reload of TLB 2000 cycles 
TLB miss requiring virtual page to be 
loaded from backing store 

Hundreds of millions of cycles 

 
             Table 1.  Latencies to different levels of the memory hierarchy for 
                            the MIPS R10000 processor in the SGI Origin 2000 
 
    The L1 and L2 cache hit rates indicate how cache friendly a program is, and these rates 
can be derived from PAPI metrics.  The L1 data cache hit rate is calculated as  
 

1.0 – (PAPI_L1_DCM / (PAPI_LD_INS + PAPI_SR_INS)) 
 
The L2 data cache hit rate is calculated as 
 

1.0 – (PAPI_L2_DCM / PAPI_L1_DCM) 
 
Values of 0.95 or better for these hit rates indicate good cache performance. 
The PAPI metrics for level 1 and level 2 load and store misses (PAPI_L1_LDM, 
PAPI_L1_STM, PAPI_L2_LDM, PAPI_L2_STM) can provide information on the 
relative read and write cache performance. 
 



    A large number of data TLB misses (PAPI_TLB_DM) indicates TLB thrashing, which 
occurs when data being accessed are spread over too many pages and TLB cache reuse is 
poor.  TLB thrashing can be fixed by using cache blocking or data copying or, when 
supported by the operating system, telling the operating system to use larger page sizes. 
 
   For SMP environments, PAPI assumes a four-state MESI cache coherence protocol 
(possible states: modified, exclusive, shared, and invalid).   In a cache-coherent SMP, the 
system signals to a CPU when the CPU needs to maintain the coherence of cache data.  
An intervention is a signal stating that some other CPU wants to use data from a cache 
line that the CPU receiving the signal has a copy of.  The other CPU requests the status of 
the cache line and requests a copy of the line if it is not the same as memory.  An 
invalidation is a signal that another CPU has modified a cache line that this CPU has in 
its cache and that this CPU needs to discard its copy.  A high number of cache line 
invalidations (PAPI_CA_INV) is an indicator of cache contention.  The CPU that 
produces the high count is being slowed because it is using data being updated by a 
different CPU.  The CPU doing the updating will be generating a high number of 
PAPI_CA_SHR events.  Thus a large number of PAPI_CA_SHR events also indicates 
that the program is being slowed by memory contention for shared cache lines.  In an 
SMP, each processor has its own TLB, but page tables may be shared.  If a processor 
changes a page table entry that another processor may be using, the first processor must 
force the second processor to flush its TLB.  This notification that a page table entry has 
changed is called a translation lookaside buffer shootdown (PAPI_TLB_SD).  A large 
number of PAPI_TLB_SD events indicates memory contention for the same page table 
entries. 
 
    PAPI metrics include counts of the various types of instructions completed, including 
integer, floating point, load, and store instructions.  Because floating point operations 
may be undercounted due to counting a floating point multiply add (FMA) as a single 
instruction, a separate count of FMA instructions completed (PAPI_FMA_INS) has been 
included so that the floating point operation count can be adjusted accordingly if 
necessary. 
 
    The store conditional instruction is used to implement various kinds of mutual 
exclusion, such as locks and semaphores.  Store conditionals (PAPI_CSR_TOT) should 
never be a significant portion of program execution time.  A small proportion of failed 
store conditional instructions (PAPI_CSR_FAL) is to be expected when asynchronous 
threads use mutual exclusion.  However, more than a small proportion indicates some 
kind of contention or false sharing involving mutual exclusion between asynchronous 
threads.   Other types of synchronization instructions, such as fetch and increment, are 
included under the count for synchronization instructions completed (PAPI_SYC_INS). 
A high number of synchronization instructions may indicate an inefficient algorithm. 
 
    Pipelining is used to make CPUs faster by overlapping the execution of multiple 
instructions, thus reducing the number of clock cycles per instruction.  The overlap 
among instructions is called instruction-level parallelism.  Superscalar processors can 
issue multiple instructions per clock cycle and thus depend on a variety of static and 



dynamic instruction scheduling techniques to maximize processor throughput. These 
techniques include software optimizations like software pipelining, loop unrolling and 
intraprocedural analysis in addition to post-RISC architectural changes like speculative 
execution, branch prediction and VLIW with predication. The net result is that while 
pipelining is implemented in hardware, its full benefit can only be realized through 
appropriately designed software.   A stall occurs when an instruction in the pipeline is 
prevented from executing during its designated clock cycle.  Stalls cause the pipeline 
performance to degrade from the ideal performance.  Stalls may occur because of 
resource conflicts when the hardware cannot support all possible combinations of 
instructions in the overlapped execution, because of data or control dependences, or 
because of waiting for access to memory.   
 
    PAPI includes events for measuring how heavily the different functional units are 
being used (PAPI_BRU_IDL, PAPI_FXU_IDL, PAPI_FPU_IDL, PAPI_LSU_IDL).   A 
functional unit is idle if it has no work to do, as opposed to being stalled if it has work to 
do but cannot because of any of a variety of reasons.  Data for these events provides 
information about the ‘mix’ of operations in the code.  Several of the PAPI metrics allow 
detection of when and why pipeline stalls are occurring  (PAPI_MEM_SCY, 
PAPI_STL_CYC, PAPI_STL_CCY, PAPI_FP_STAL).  Because pipelining is for the 
most part beyond the control of the application programmer, the PAPI metrics relevant to 
pipelining are mainly intended to provide performance data relevant to compiler writers 
(e.g., for use in compiler feedback loops).  However, the application programmer may be 
able to use pipeline performance data, together with compiler output files, to restructure 
application code so as to allow the compiler to do a better job of software pipelining.  The 
application programmer may also find it useful to look at pipelining performance data 
when experimenting with different compiler options. 
 
    Letting an instruction move from the instruction decode stage of the pipeline into the 
execution stage is called instruction issue.  An instruction is completed once all logically 
previous instructions have completed, and only then is its result added to the visible state 
of the CPU.  Because of speculative execution, a mispredicted branch can cause 
instructions that have been executed but not completed to be discarded.  Resource 
contention can cause instructions to be issued more than once before being completed.  
Normally branch mispredictions and reissues are rare, and the number of issued 
instructions (PAPI_TOT_IIS) should correspond fairly closely to the number completed 
(PAPI_TOT_INS).  A high number of mispredicted branches (PAPI_BR_MSP) indicates 
that something is wrong with the compiler options or that something is unusual about the 
algorithm.  If the number of issued instructions greatly exceeds the number completed, 
and the count of mispredicted branches remains low, then the load/store pipeline is likely 
experiencing resource contention, causing load and store instructions to be issued 
repeatedly.  
 
    Ratios derived from a combination of hardware events can sometimes provide more 
useful information than raw metrics.  Two ratios defined as PAPI metrics are floating 
point operations completed per second (PAPI_FLOPS) and total instructions completed 
per second (PAPI_IPS).  Another useful ratio is completed operations per cycle 



(PAPI_TOT_INS/PAPI_TOT_CYC).  A low value for this ratio indicates that the 
processor is stalling frequently.  The typical value for this ratio will depend on the 
underlying processor architecture.  The ratio of completed loads and stores per cycle 
(PAPI_LST_INS/PAPI_TOT_CYC) indicates the relative density of memory access in 
the program.  The ratio of floating operations completed per cycle 
(PAPI_FP_INS/PAPI_TOT_CYC) indicates the relative density of floating point 
operations.     
 
3 Design  
 
3.1 Layered Architecture 
 
    The PAPI architecture uses a layered approach, as shown in Figure 1.  Internally, the 
PAPI implementation is split into portable and machine-dependent layers.  The topmost 
portable layer consists of the high and low-level PAPI interfaces.  This layer is 
completely machine independent and requires little porting effort.  It contains all of the 
API functions as well as numerous utility functions that perform state handling, memory 
management, data structure manipulation and thread safety. In addition, this layer 
provides advanced functionality not always provided by the operating system, namely 
event profiling and overflow handling. The portable layer calls the substrate, the internal 
PAPI layer that handles the machine-dependent portions of accessing the counters. The 
substrate is free to use whatever methods deemed appropriate to facilitate counter access, 
whether that be register level operations (T3E), customized system calls (Linux/x86) or 
calls to another library (AIX 4.3). The substrate interface and functionality are well 
defined, leaving most of the code free from conditional compilation directives.  For each 
architecture/operating system pair, only a new substrate layer needs to be written.  
Experience indicates that no more than a few weeks are required to generate a fully 
functional substrate for a new platform, if the operating system provides the necessary 
support for accessing the hardware counters.  



 
                              Figure 1.  PAPI Architecture 
 
PAPI provides two interfaces to the underlying counter hardware: a simple, high-level 
interface for the acquisition of simple measurements and a fully programmable, low-level 
interface directed towards users with more sophisticated needs.  The low-level interface 
manages hardware events in groups called EventSets.  EventSets are fully programmable 
and have features such as guaranteed thread safety, writing of counter values, 
multiplexing, and notification upon crossing a threshold, as well as processor-specific 
features.  On the other hand, the high-level interface provides a very simple and primitive 
interface to control and access the hardware counters. The target audience for the high-
level interface is application engineers and benchmarking teams looking to quickly and 
simply acquire some rudimentary application metrics. The tool designer will likely find 
the high-level interface too restrictive. 
 
The high-level API may be found in Appendix B.  The low-level API may be found in 
Appendix C.   Example programs for the high and low-level interfaces, respectively, may 
be found in Appendices D and E. 
 



 
3.2  Portability 
 
    While the API addresses source code portability through an interface, it does nothing 
to address the difficulty in decoding the machine-specific settings for the performance 
monitor control hardware. As a proposed solution, PAPI includes sixty-four predefined 
events, called presets, which are representative of most major RISC-like events. The 
complete list of presets can be found in Appendix A.  PAPI implements as many presets 
as possible on a given platform without providing misleading or erroneous results. 
Providing such a classification can cause problems for the naïve user, especially when 
results for the same event are compared between systems. Direct comparison between 
systems is not the intention of the PAPI presets. Rather, the intention is to standardize the 
names for the metrics, not the semantics of those names. Thus the user must still have a 
working knowledge about the processor under study in order to make sense of the 
performance data.  
 
3.3  EventSets 
 
    PAPI provides an abstraction from particular hardware events called EventSets.  An 
EventSet consists of events that the user wishes to count as a group.  There are two 
reasons for this abstraction.  The first reason is efficiency in accessing the counters 
through the operating system.  Most operating systems allow the programmer to move the 
counter values in bulk without having to make a separate system call for each counter.  
By exposing this grouping to the user, the PAPI library can greatly reduce its overhead 
when accessing the counters.  This efficiency is especially important when PAPI is used 
to measure small regions of code inside loops with large iteration counts.  The second 
reason for EventSets is that users can evolve their own specialized counter groupings 
specific to their application areas.  In practice, most users have an understandably 
difficult time relating a single counter value to the performance of the region of code 
under study. More often than not, the relevant performance information is obtained by 
relating different metrics to one another.  For example, the ratio of loads to level 1 cache 
misses is often the dominant performance indicator in dense numerical kernels. 
 
    EventSets are managed by the user through the use of integer handles, which help 
simplify inter-language calling interfaces.  The use of EventSets has been freed from as 
many programming restrictions as possible.  The user is free to allocate and use any 
number of them as long as the substrate can provide the required resources.  Multiple 
EventSets may be used simultaneously and may share counters.  If the user tries to add 
more events to an EventSet than are simultaneously countable on the underlying platform, 
PAPI returns an appropriate error code, unless the user has explicitly enabled software 
multiplexing.  PAPI also returns an error code if the user attempts to use an EventSet that 
is not in the proper state. 
  



 
3.4  Multiplexing 
 
    Most modern microprocessors have a very limited number of events than can be 
counted simultaneously.  This limitation severely restricts the amount of performance 
information that the user can gather during a single run.  As a result, large applications 
with many hours of run time may require days or weeks of profiling in order to gather 
enough information on which to base a performance analysis. This limitation can be 
overcome by multiplexing the counter hardware. By subdividing the usage of the counter 
hardware over time, multiplexing presents the user with the view that many more 
hardware events are countable simultaneously. This unavoidably incurs a small amount 
of overhead and can adversely affect the accuracy of reported counter values. 
Nevertheless, multiplexing has proven useful in commercial kernel level performance 
counter interfaces like SGI’s IRIX 6.x. Hence, on platforms where the operating system 
or kernel level counter interface does not support multiplexing, PAPI plans to provide the 
capability to multiplex through the use of a high resolution interval timer.  To prevent 
naïve use of multiplexing by the novice user, the high-level API can only access those 
events countable simultaneously by the underlying hardware, unless a low-level call has 
been used to explicitly enable multiplexing.   
 
3.5  User Callbacks on Threshold 
 
    One of the most significant features of PAPI for the tool writer is its ability to call 
user-defined handlers when a particular hardware event exceeds a specified threshold.  
This is accomplished by setting up a high resolution interval timer and installing a timer 
interrupt handler. For systems that do not support counter overflow at the operating 
system level, PAPI uses SIGPROF and ITIMER_PROF. PAPI handles the signal by 
comparing the current counter value against the threshold. If the current value exceeds 
the threshold, then the user’s handler is called from within the signal context with some 
additional arguments. These arguments allow the user to determine which event 
overflowed, how much it overflowed, and at what location in the source code.  
 
    Using the same mechanism as for user-programmable overflow handling, PAPI also 
guards against register overflow of counter values.  Each counter can potentially be 
incremented multiple times during a single clock cycle.  This fact combined with 
increasing clock speeds and the small precision of some physical counters means that 
counter overflow is likely to occur on platforms where 64-bit counters are not supported 
in hardware or by the operating system.  For such cases, PAPI implements 64-bit 
counters in software using the same mechanism as for user-specified overflow dispatch. 
 
3.6 Statistical Profiling 
 
    Statistical profiling is built upon the above method of installing and emulating arbitrary 
callbacks on overflow. Profiling works as follows: when an event exceeds a threshold, a 
signal is delivered with a number of arguments. Among those arguments is the 



interrupted thread’s stack pointer and register set. The register set contains the program 
counter, the address at which the process was interrupted when the signal was delivered.  
Performance tools such as UNIX prof extract this address and hash the value into a 
histogram.  At program completion, the histogram is analyzed an associated with 
symbolic information contained in the executable.  What results is a line-by-line account 
of where counter overflow occurred in the program.  GNU prof in conjunction with the 
–p option of the GCC compiler performs exactly this analysis using process time as the 
overflow trigger.  PAPI aims to generalize this functionality so that a histogram can be 
generated using any countable event as the basis for analysis.  
 
    PAPI provides support for execution profiling based on any counter event. The 
PAPI_profil() call creates an histogram of overflow counts for a specified region of the 
application code.  In the exact manner of UNIX profil(), the identified region is logically 
broken up into equal size subdivisions.  Each time the counter reaches the specified 
threshold, the current subdivision is identified and its corresponding hash bucket is 
incremented. 
 
    Because the overflow process is emulated at a relatively coarse grain, PAPI runs the 
risk of falsely identifying regions of code as the cause of large numbers of overflows. To 
alleviate some of these problems, the developers of PAPI are experimenting with a 
variety of statistical methods to recover additional useful data including range 
compression of the histogram, randomization of the timer interval, and weighting the 
increments. 
 
3.7  Thread Support 
 
    As very large SMP’s become ever more popular in the HPC community, fully thread-
aware performance tools are becoming a necessity.  This necessity presents a significant 
challenge to the PAPI development team, due largely to the variety of thread packages.  
As with any API, the interface must be re-entrant, because any number of threads may 
simultaneously call the same PAPI function.  This means that any globally writeable 
structures must be locked while in use.  This requirement has the potential of increasing 
overhead and introducing large sections of machine dependent code to the top layer. 
PAPI has only one global data structure, which keeps track of process wide PAPI options 
and thread specific pointer maps. Fortunately, this structure is only written by two API 
calls that are almost exclusively used during the initialization and termination of threads 
and the PAPI library.   
 
    A second problem is the accuracy of event counts as returned by threads calling the 
API.  In order to support threaded operation, the operating system must save and restore 
the counter hardware upon context switches among different threads or processes.  The 
PAPI library must keep thread-specific copies of the counter data structures and values.  
In addition, the PAPI library detects existing or new threads when they call a PAPI 
function and initializes the necessary thread-specific data structures at that time. There 
are some threading API’s that hide the concept of user and kernel level threads from the 
user.  Pthreads and OpenMP are the most striking examples.  As a result, unless the user 



explicitly binds his or her thread to a kernel thread (sometimes called a Light Weight 
Process, or LWP), the counts returned by PAPI may not necessarily be accurate.  
Pthreads permits any ‘Pthread’ to run on any LWP unless previously bound.  Unbound 
user level threads that call PAPI will most likely return unreliable or inaccurate event 
counts.  Fortunately, in the batch environments of the HPC community, there is no 
significant advantage to user level threads and thus kernel level threads are the default.  
For situations where this is not the case, PAPI developers have plans to incorporate 
simple routines to facilitate binding by the user. 
 
3.8  Accuracy of Performance Counter Data 
 
    Although PAPI attempts to introduce as little overhead as possible and thus perturb 
application performance to only a minor degree, some perturbation is inevitable and has 
yet to be measured.  Counts produced for various PAPI metrics may vary from one run to 
another of the same program on the same inputs on some architectures, due to contention 
for resources with other applications or the operating system.  The vendor-provided 
counter interfaces may occasionally have bugs that cause inaccurate reporting of 
hardware counter data.  More study is needed to determine the accuracy of performance 
counter data measured by PAPI.  With its portable interface to hardware counters, PAPI 
actually provides a good framework for conducting statistical studies of the reliability and 
consistency of this data.   
 
4 Performance Counter Implementations 
 
4.1 Pentium Pro/II/III on Linux v2.0, v2.2 
 
    This platform was the first one targeted for a variety of reasons, including access to the 
kernel source code and the simplicity of the counters. The counters on the Pentium Pro 
and Pentium II/III are one 64-bit cycle counter and two 40-bit general purpose counters. 
The Pentium Pro and Pentium II/III have identical counter sizes and event codes. 
Erik Hendriks had written a performance counter kernel extension for Beowulf that 
provided an excellent framework on which to hang additional functionality. Some of the 
features added to the kernel patch include the ability to reset the cycle counter, faster 
configuration and access, process/thread inheritance and support for Linux kernel 
versions outside the main tree.  
 
4.2 SGI/MIPS R10000/R12000 on IRIX 6.x 
 
    This platform has one of the best vendor-provided counter interfaces, and the counter 
interface is well-documented[4].  PAPI chose to implement the IRIX substrate using the 
ioctl() interface to the /proc filesystem.  There are several advantages to the SGI platform 
that made some aspects of PAPI easier to implement, such as kernel level multiplexing 
and internally supported overflow handling.  The MIPS R10000 and R12000 have two 
32-bit counters that support a total of 31 different events. For PAPI, there were two main 
problems with this platform.  The first problem was that there is no way to write to the 



counters, which means that PAPI cannot reset the counters by zeroing them.  This API 
routine was therefore implemented in the substrate by emulating zeroing of the counters 
through bookkeeping.  The second problem is that a process may have access to the 
counters taken from it by the kernel.  Once a process has acquired the counters, the same 
process may not reacquire them.  When access to the counters has been given to another 
process, the values cannot be trusted and the process should be restarted.  PAPI will 
detect a change in counter ownership and will exit with an error message. 
 
4.3 IBM Power 604/604e/630 on AIX 4.3 
 
    The IBM 604/604e/630 substrate is built over the pmtoolkit, which is a proprietary 
kernel extension for AIX 4.3 that supports a system and kernel thread performance 
monitor API[9].  pmtoolkit adds support to AIX for optional Performance Monitor (PM) 
contexts which are extensions of the regular processor and thread contexts and include 
one 64-bit counter per hardware counter and a set of control words.  The control words 
define what events get counted and when counting is on or off. The November 1999 
release of the pmtoolkit includes event tables for the 604, 604e, 630, and 630+.  The 604 
has two counters, the 604e has four counters, and the 630 and 630+ processors both have 
eight counters.  Architectural issues for the IBM POWER3, which uses the 630 
processor, may be found in [1]. 
 
4.4 Compaq Alpha EV4/5/6 on Tru64 Unix 
 
    The pfm pseudo-device is the interface to the Alpha on-chip performance counters 
under Tru64 Unix.  The interface consists of a set of ioctl() calls.  The Tru64 kernel must 
be rebuilt to configure the pfm pseudo-device into it.  The EV4 CPU (21064, 21064A, 
21066, and 21068 processors) has two counters.  The EV5 (21164, 21164A, 21164PC) 
has three counters.  The EV6 (21164) has two counters. The EV4, EV5, and EV6 
counters can be independently programmed.  The EV67 counters are not completely 
independent.  Any one statistic may be selected, or one of the following pairs may be 
selected: (cycles0, replay); (retinst, cycles1); (retinst, bcachemisses). 
 
4.5 Cray T3E, EV5 on Unicos/mk 
 
    The T3E contains a large number of modified EV5 processors arranged in a three 
dimensional torus. Each processor in the system runs a slimmed down version of the 
operating system Unicos/mk, a derivative of the Mach microkernel. Access to the EV5’s 
three performance counters is achieved through customized assembly routines provided 
by SGI/Cray. These routines make calls to the PAL code, microcode set up by the 
manufacturer to handle low-level operations. While this interface is very small, it is 
programmable enough to support the necessary functionality in PAPI. The main problem 
on the T3E is that the performance registers are not accumulated by the PAL code into 64 
bit quantities and thus this accumulation must be performed by PAPI. Furthermore, the 
Unicos/mk scheduler may migrate a job to another CPU. In that case, PAPI’s only valid 
course of action is to detect the fault and inform the user.  
 



5  Tools 
 
5.1 Display of PAPI Performance Data 
 
    The PAPI project has developed two tools that demonstrate graphical display of PAPI 
performance data in a manner useful to the application developer.  These tools are meant 
to demonstrate the capabilities of PAPI rather than as production quality tools.  The tool 
front ends are written in Java and can be run on a separate machine from the program 
being monitored.  All that is required for real-time monitoring and display of application 
performance is a socket connection between the machines.  
 
    The first tool, called the perfometer,  provides a runtime trace of a chosen PAPI metric, 
as shown in Figure 2 for floating point operations per second (PAPI_FLOPS).  This 
particular example illustrates how calls to PAPI routines at the beginnings and ends of 
procedures can provide information about the relative floating point performance of those 
procedures.  The same display can be generated for any of the PAPI metrics.  For 
example, Figure 3 shows a display of the L1 cache hit rate. 
 

 
 

Figure 2.  Perfometer displaying MFLOPs 
 



    
 
                 Figure 3.  Perfometer displaying the L1 cache hit rate. 
 
 The second tool, called the profometer, provides a histogram that relates the occurrences 
of a chosen PAPI event to text addresses in the program, as shown in Figure 4 for L1 data 
cache misses.   Again, the same display can be generated for any of the PAPI metrics.  
Future plans are to develop the capability of relating the frequency of events to source 
code locations, so as to allow the application developer to quickly locate portions of the 
program that are the source of performance problems.   
 

 
 
                 Figure 4.  Profometer display L1 data cache misses 
 
5.2 Integration with Other Tools 
 
    Visual Profiler, or vprof, is a tool developed at Sandia National Laboratory for 
collecting statistical program counter data and graphically viewing the results on Linux 
Intel machines [8].  vprof uses statistical event sampling to provide line-by-line execution 
profiling of source code.  vprof can sample clock ticks using the profil system call.  The 
vprof developer has added support for PAPI so that vprof can also sample the wide range 



of system events supported by PAPI.  A screenshot showing vprof examination of both 
profile and PAPI_TOT_CYC data is shown in Figure 5. 
 

 
 
              Figure 5.  vprof displaying profil and PAPI_TOT_CYC data 
 
    SvPablo is a graphical source code browser and performance visualizer that has been 
developed as part of the University of Illinois’ Pablo project [5,6].  SvPablo supports 
automatic instrumentation of HPF codes with Portland Group’s HPF compiler and 
interactive instrumentation of C and Fortran programs.  During execution of an 
instrumented code the SvPablo library maintains statistics on the execution of each 
instrumented event on each processor and maps these statistics to constructs in the 
original source code.  The current version of SvPablo includes support for the MIPS 
R10000 hardware performance counters.  The next version of SvPablo, being developed 
at the IBM Advanced Computing Technology Center, has integrated support for PAPI.  
Screenshots of SvPablo displays of PAPI metrics are shown in Figures 6 and 7. 
 



 
 
             Figure 6.  SvPablo source code browser displaying PAPI metrics 
 



 
 

 
 
             Figure 7.  SvPablo statistics displays showing PAPI data 
 
    DEEP from Pacific-Sierra Research stands for Development Environment for Parallel 
Programs.  DEEP provides an integrated interactive GUI interface that binds 
performance, analysis, and debugging tools back to the original parallel source code.  
DEEP supports Fortran 77/90/95, C, and mixed Fortran and C in Unix and Windows 
95/98/NT environments.  DEEP supports both shared memory (automatic parallelization, 
OpenMP) and distributed memory (MPI, HPF, Data Parallel C) parallel program 
development.  A special version of DEEP called DEEP/MPI is aimed at support of MPI 
programs. DEEP provides a graphical user interface for program structure browsing, 
profiling analysis, and relating profiling results to source code.   DEEP developers are 
incorporating support for PAPI so that statistics for the standard PAPI metrics can be 
viewed and analyzed from the DEEP interface.  A screenshot of the DEEP/MPI interface 
displaying PAPI data for L2 cache misses is shown in Figure 8. 



 
  
 
 
 

 
              Figure 8.  DEEP/MPI displaying PAPI data for L2 cache misses 
 
5 Related Work 
 
5.1  PCL 
 
    The Performance Counter Library (PCL) is a common interface for accessing 
performance counters built into modern microprocessors in a portable way [2].  PCL 
supports query for functionality, start and stop of counters, and reading the current values 
of counters.  Performance counter values are returned as 64-bit integers on all supported 
platforms.  Performance counting can be down in user mode, system mode, or user-or-
system mode.  PCL supports nested calls to PCL functions to allow hierarchical 
performance measurements.  However, nested calls must use exactly the same list of 
events.  PCL functions are callable from C, C++, Fortran, and Java.  Similar to PAPI, 
PCL defines a common set of events across platforms for accesses to the memory 
hierarchy, cycle and instruction counts, and the status of functional units, and translates 
these into native events on a given platform where possible.  PAPI additionally defines 



events related to SMP cache coherence protocols and to cycles stalled waiting for 
memory access.  Unlike PAPI, PCL does not support software multiplexing or user-
defined overflow handling.  The PCL API is very similar to the PAPI high-level API and 
consists of calls to start a list of counters, and to read or stop the counter most recently 
started.  PCL is available for Tru64 Unix on Alpha 21164 and Alpha 21264 processors, 
for CRAY Unicos/mk on Alpha 21164, for SGI IRI 6.x on R10000 and R12000 
processors, for Solaris 2.x on UltraSPARC I/II, and for Linux 2.0.36 on 
Pentium/PPro/Pentium II/Pentium III.  In the PCL Solaris and Linux implementations, 
the counters are not saved on context switches.  PCL does not support native events. 
 
6  Conclusions 
 
    PAPI aims to provide the tool designer and application engineer with a consistent 
interface and methodology for use of the performance counter hardware found in most 
major microprocessor lines. The main motivation for this interface is the increasing 
divergence of application performance from near peak performance of most machines in 
the HPC marketplace. This performance gap is largely due to the disparity in memory 
and communication bandwidth at different levels of the memory hierarchy. With no 
viable hardware solution in sight, users requiring the optimal performance must expend 
significant effort on single processor and shared memory optimization techniques. To 
address this problem users need a compact set of robust and useful tools to quickly 
diagnose and analyze processor specific performance metrics. To that end, many design 
efforts have wastefully reinvented the software infrastructure necessary for a suite of 
program analysis tools. PAPI directly challenges this model by focusing on a reusable, 
portable and functionality-oriented infrastructure for performance tool design. It is hoped 
that through additional collaborative efforts, PAPI will become one of a number of 
modular components for advanced tool design and program analysis.  
 
    The PAPI specification and software, as well as documentation and additional 
supporting information, are available from the PAPI web site at 
http://icl.cs.utk.edu/projects/papi. 
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Appendix A.  PAPI standard event definitions 
 
Memory hierarchy access events 
 
PAPI_L1_DCM Level 1 data cache misses 
PAPI_L1_ICM Level 1 instruction cache misses 
PAPI_L2_DCM Level 2 data cache misses 
PAPI_L2_ICM Level 2 instruction cache misses 
PAPI_L3_DCM Level 3 data cache misses 
PAPI_L3_ICM Level 3 instruction cache misses 
PAPI_L1_TCM Level 1 total cache misses 
PAPI_L2_TCM Level 2 total cache misses 
PAPI_L3_TCM Level 3 total cache misses 
PAPI_TLB_DM Data translation lookaside buffer misses 
PAPI_TLB_IM Instruction translation lookaside buffer misses 
PAPI_TLB_TL Total translation lookaside buffer misses 
PAPI_L1_LDM Level 1 load misses 
PAPI_L1_STM Level 1 store misses 
PAPI_L2_LDM Level 2 load misses 
PAPI_L2_STM Level 2 store misses 
 
 
Cache coherence events 
 
PAPI_CA_SNP Snoops 
PAPI_CA_SHR Request for access to shared cache line 
PAPI_CA_CLN Request for access to clean cache line 
PAPI_CA_INV Cache line invalidation 
PAPI_CA_ITV Cache line intervention 
PAPI_TLB_SD Translation lookaside buffer shootdowns 
 
 
Cycle and instruction counts 
 
PAPI_TOT_CYC Total cycles 
PAPI_TOT_IIS Total instructions issued 
PAPI_TOT_INS Total instruction completed 
PAPI_INT_INS Integer instructions completed 
PAPI_FP_INS Floating point instructions completed 
PAPI_LD_INS Load instructions completed 
PAPI_SR_INS Store instructions completed 
PAPI_LST_INS Total load/store instructions completed 
PAPI_FMA_INS FMA instructions completed 



PAPI_VEC_INS Vector/SIMD instructions completed 
PAPI_BR_UCN Unconditional branch instructions completed 
PAPI_BR_CN Conditional branch instructions completed 
PAPI_BR_TKN Conditional branch instructions taken 
PAPI_BR_NTK Conditional branch instructions not taken 
PAPI_BR_MSP Conditional branch instructions mispredicted 
PAPI_BR_PRC Conditional branch instructions correctly predicted 
PAPI_BR_INS Total branch instructions completed 
PAPI_CSR_FAL Failed store conditional instructions 
PAPI_CSR_SUC Successful store conditional instructions 
PAPI_CSR_TOT Total store conditional instructions 
PAPI_SYC_INS Synchronization instructions completed 
PAPI_FLOPS Floating point instructions completed per second 
PAPI_IPS Instructions completed per second 
 
 
Functional unit and pipeline status events 
 
PAPI_BRU_IDL Cycles branch units are idle 
PAPI_FXU_IDL Cycles integer units are idle 
PAPI_FPU_IDL Cycles floating point units are idle 
PAPI_LSU_IDL Cycles load/store units are idle 
PAPI_MEM_SCY Cycles stalled waiting for memory access 
PAPI_MEM_RCY Cycles stalled waiting for memory read 
PAPI_MEM_WCY Cycles stalled waiting for memory write 
PAPI_STL_CYC Cycles with no instruction issue 
PAPI_FUL_ICY Cycles with maximum instruction issue 
PAPI_STL_CCY Cycles with no instruction completion 
PAPI_FUL_CCY Cycles with maximum instruction completion 
 



Appendix B. High-level API 
 
The simple interface implemented by the following four routines allows the user to access and count 
specific hardware events. It should be noted that this API can be used in conjunction with the low-level 
API. However, the high-level API by itself is only able to access those events countable simultaneously by 
the underlying hardware.  Function prototypes are listed for both C and Fortran users.  Functions that have 
not been ported to Fortran are not listed. 
 
C:  int PAPI_num_events()  
FORTRAN:  PAPI_num_events(INTEGER numevents ) 
 
    This function returns the optimal length of the values array for the high-level functions, without needing 
multiplexing. This value corresponds to the number of hardware counters supported by the current 
substrate.  
 
 
C:  int PAPI_read_counters(long long *values, int array_len) 
FORTRAN: read_counters(INTEGER*8 values , INTEGER array_len, INTEGER errorcode ) 
 
    Read the running counters into the values array. This call implicitly re-initializes the counters to zero and 
lets them continue to run upon return. Returns PAPI_OK if successful, and appropriate error code 
otherwise.  
 
 
C:  int PAPI_start_counters(int *events, int array_len)  
FORTRAN:  PAPI_start_counters(INTEGER events, INTEGER array_len, INTEGER errorcode) 
 
    Start counting the events named in the events array. This function implicitly stops and initializes any 
counters running as a result of a previous call to PAPI_start_counters(). It is the user's responsibility to 
choose events that can be counted simultaneously by reading the vendor's documentation. The length of 
this array should be no longer than PAPI_MAX_EVENTS. Returns PAPI_OK if successful, and 
appropriate error code otherwise.  
 
 
C:  int PAPI_stop_counters(long long *values, int array_len)  
FORTRAN:  PAPI_stop_counters(INTEGER*8 values , INTEGER array_len, INTEGER 

errorcode) 
  
    Stop the running counters and copy the counts into the values array. This is to be used in conjunction 
with PAPI_start_counters. Returns PAPI_OK if successful, and appropriate error code otherwise. 
 
 
 
 



Appendix C. Low-level API 
 
The following functions represent the low-level portion of PAPI. These functions provide greatly increased 
efficiency and functionality over the high-level API presented in the previous section. As mentioned in the 
introduction, the low-level API is only as powerful as the substrate upon which it is built. Thus some 
features may not be available on every platform. The converse may also be true, that more advanced 
features may be available and defined in the header file. The user is encouraged to read the documentation 
carefully.  Function prototypes are listed for both C and Fortran users.  Functions that have not been ported 
to Fortran are not listed. 
 
C:   int PAPI_accum(int EventSet, unsigned long long *values) 
FORTRAN:  PAPI_accum( INTEGER EventSet, , INTEGER*8 values,  INTEGER errorcode)  
 
    This function accumulates the running or stopped counters in EventSet into the values array. In addition, 
it initializes the internal counters to zero. 
 
C:   int PAPI_add_event(int *EventSet, int Event)  
FORTRAN:  PAPI_add_event(INTEGER EventSet, INTEGER Event, INTEGER errorcode) 
 
    Adds the named event to the named EventSet if possible. If the EventSet is new and has not been 
initialized, PAPI_add_event does so. If the EventSet has room for another event, multiplexing options are 
not violated, and the EventSet is not running, it will add the event. Returns PAPI_OK if successful, and 
appropriate error code otherwise.  
 
 
C:   int PAPI_add_events(int *EventSet, int *Events, int number)  
FORTRAN:  PAPI_add_events(INTEGER EventSet, INTEGER Events, INTEGER number, 

INTEGER errorcode) 
 
    Adds events one by one, as long as nothing is violated. The EventSet must be valid, multiplexing must 
not be violated as set, EventSet must be stopped, and events must be valid, of course. As long as the 
EventSet is not set to NULL, it is valid. Returns PAPI_OK if successful, and appropriate error code 
otherwise.  
 
 
C:   int PAPI_add_pevent(int *EventSet, int code, void *inout) 
 
    Some platforms support programmable events that take specific additional parameters. This function 
allows use of these events, and behaves just like PAPI_add_event otherwise as far as requirements for the 
eventset to be stopped, have room for an additional event, etc. Returns PAPI_OK if successful, and 
appropriate error code otherwise.  
 
 
C:   int PAPI_cleanup(int *EventSet)  
FORTRAN:  PAPI_cleanup(INTEGER EventSet, INTEGER errorcode) 
 
    This function removes the EventSet from the eventset map. The EventSet must be stopped in order for 
this call to succeed. If the EventSet still contains events, they will be removed first. Returns PAPI_OK if 
successful, and appropriate error code otherwise.  
 
 
 
 
 
 



C:   int PAPI_get_opt(int option, PAPI_option_t *ptr)  
 
    This function queries the status of tunable options in the PerfAPI Library. "option" is an input/output 
parameter (see below for options). The"ptr" structure is for input and output. Not all options fill the 
PAPI_option_t structure. The reader is urged to carefully read the PerfAPI Draft for a complete discussion 
of PAPI_get_opt. The file papi.h contains definitions for the structures unioned in the PAPI_option_t 
structure. This returns PAPI_OK if successful, and appropriate error code otherwise. Supported options 
include getting the platform's clock rate, the number of hardware counters supported, an eventset's domain, 
granularity, etc.  
 
 
C:   int PAPI_init(void) 
FORTRAN:  PAPI_init(INTEGER errorcode)  
 
    Allocates and initializes memory needed for PAPI. Returns PAPI_OK if successful, and appropriate 
error code otherwise.  
 
 
C:   int PAPI_list_events(int EventSet, int *Events, int *number) 
FORTRAN:  PAPI_list_events(INTEGER EventSet, INTEGER Events, INTEGER number, 

INTEGER errorcode)  
 
    This function lists eventcodes from EventSet into Events. If number is less than the number of events 
added to the EventSet, number will be the value used for the number of events listed. If greater than the 
number of events in the EventSet, then all of the events in the EventSet will be listed. Returns PAPI_OK if 
successful, and appropriate error code if otherwise.  
 
 
C:   int PAPI_overflow(int EventSet, int EventCode, int threshold, int flags, 

PAPI_overflow_handler_t *handler)  
 
    Sets options for designated EventSet to register overflows at the designated threshold, triggering the 
user's handler. EventSet must be stopped, and not already be set for overflow handling. Returns PAPI_OK 
if successful, and appropriate error code otherwise.  
 
 
C:   int PAPI_perror(int code, char *destination, int length) 
FORTRAN:  PAPI_perror(INTEGER code, CHARACTER*128 destination, INTEGER length, 

INTEGER errorcode)  
 
    This function copies length worth of the error description string corresponding to error code into 
destination. The resulting string is always null terminated. If length is 0, then the string is printed on stderr. 
Returns PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C: int PAPI_profil(void *buf, int bufsiz, caddr_t offset, int scale, int EventSet, int 

EventCode, int threshold, int flags)  
 
    This function sets the values in the EventSetProfileInfo_t structure, if profiling is to be enabled for this 
EventSet. The EventSet must be in the stopped state for this call to succeed. Provides profile functionality 
for section of code EventSet is running in. See include file sys/types.h for info on core address type 
(caddr_t) structure. Also see man profil(2). Returns PAPI_OK if successful, and appropriate error code 
otherwise.  
 
 
 



C:   int PAPI_query_event(int EventCode)  
FORTRAN:  PAPI_query_event(INTEGER EventCode, INTEGER errorcode) 
 
    This function tests if the event specified by EventCode is supported by the current substrate. Returns 
PAPI_OK if the event is supported, and error code if not.  
 
 
 
C:   int PAPI_query_event_verbose(int EventCode, PAPI_preset_info_t *info) 
 
    This function returns description about queried event if it is supported on the current platform. Returns 
PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C:   const PAPI_preset_info_t *PAPI_query_all_events_verbose(void)  
 
    Returns structure containing all PAPI presets, regardless of implementation on current platform. The 
return structure is of type PAPI_preset_info_t (see papi.h).  
 
 
C:   int PAPI_event_code_to_name(int EventCode, char *out) 
FORTRAN:  PAPI_event_code_to_name(INTEGER EventCode, CHARACTER*128 out, 

INTEGER errorcode)  
 
    This function translates an eventcode from the user into the event name used by PAPI. Return code is 
PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C:   int PAPI_event_name_to_code(char *in, int *out)  
FORTRAN:  PAPI_event_name_to_code(CHARACTER*128, INTEGER out, INTEGER errorcode) 
 
    This function translates an event name to PAPI event code. Return value is PAPI_OK if successful and 
appropriate error code otherwise.  
 
 
C:   int PAPI_read(int EventSet, long long *values)  
FORTRAN:  PAPI_read(INTEGER EventSet, INTEGER*8 values , INTEGER errorcode) 
 
    This function copies the running or stopped counters in EventSet into the values array. Internal counters 
will not be re-initialized to zero, nor will they be stopped. Returns PAPI_OK if successful, and 
appropriate error code otherwise.  
 
 
C:   int PAPI_rem_event(int *EventSet, int Event)  
FORTRAN:  PAPI_rem_event(INTEGER EventSet, INTEGER Event, INTEGER errorcode) 
 
    This function removes Event from EventSet. Returns PAPI_OK if successful, and appropriate error code 
otherwise.  
 
 
C:   int PAPI_rem_events(int *EventSet, int *Events, int number)  
FORTRAN:  PAPI_rem_events(INTEGER EventSet, INTEGER Events, INTEGER number, 

INTEGER errorcode) 
 
    This function removes events listed in the Events array from EventSet. Returns PAPI_OK if successful, 
and appropriate error code otherwise.  



 
 
C:   int PAPI_reset(int EventSet)  
FORTRAN:  PAPI_reset(INTEGER EventSet, INTEGER errorcode) 
 
    This function zeroes the internal counters of the hardware Events contained in EventSet. Returns 
PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C:   int PAPI_restore(void) 
FORTRAN:  PAPI_restore(INTEGER errorcode)  
 
    PAPI_save and PAPI_restore are for use with external libraries that wish to preserve the state of PAPI 
and the hardware counters. For instance a C++ instrumentation library will probably want to call 
PAPI_save() upon entry to its functions and PAPI_restore() upon exit. These function calls map to 
whatever is the most efficient on the underlying platform for saving and restoring. Returns PAPI_OK if 
successful, and appropriate error code otherwise. (not yet implemented)  
 
 
C:   int PAPI_save(void)  
FORTRAN:  PAPI_save(INTEGER errorcode) 
 
    see above description (not yet implemented)  
 
 
C:   int PAPI_set_domain(int domain) 
FORTRAN:  PAPI_set_domain(INTEGER domain, INTEGER errorcode)  
 
    This function sets the execution domain in which events are counted. Returns PAPI_OK if successful 
and appropriate error code otherwise. Supported domains are user, kernel, other, and all. For PAPI 
constants and details about the domain settings, see papi.h  
 
 
C:   int PAPI_set_granularity(int granularity)  
FORTRAN:  PAPI_set_granularity(INTEGER granularity, INTEGER errorcode) 
 
    This function sets the measurement granularity in which the counters function. By default, the 
granularity is set to the most restrictive supported by the substrate. Returns PAPI_OK if successful, and 
appropriate error code otherwise. Granularity settings include per thread, process, process group, current 
cpu, and each cpu. For more information, see papi.h  
 
 
C:   int PAPI_set_opt(int option, PAPI_option_t *ptr) 
 
    This function sets specific options of the PerfAPI Library, its substrate, or specific EventSets. The 
PAPI_option_t structure represents a union of all the structures that can be arguments to the different 
options. In addition, there may exist machine specific options so please check the header file for 
documentation. The reader is urged to carefully read the PerfAPI Draft for a complete discussion of 
PAPI_set_opt. The file papi.h contains definitions for the structures unioned in the PAPI_option_t 
structure. Returns PAPI_OK if successful, and appropriate error code otherwise.  
 
 
 
 
 
 



C:   void PAPI_shutdown (void)  
FORTRAN:  PAPI_shutdown() 
 
    This is an exit function used by the PAPI Library to free resources and shut down when certain error 
 conditions arise. This call is not necessary, but allows the user the capability to free memory and 
 resources used by the PAPI Library. Returns PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C:   int PAPI_start(int EventSet) 
FORTRAN:  PAPI_start(INTEGER EventSet, INTEGER errorcode)  
 
    This function starts counting all of the hardware events contained in EventSet. All counters are implicitly 
set to zero. PAPI_start() will not start the hardware counters if a conflicting EventSet is already running 
and the counters are already in use. Returns PAPI_OK is successful, and appropriate error code 
otherwise.  
 
 
C:   int PAPI_state(int EventSet, int *status)  
FORTRAN:  PAPI_state(INTEGER EventSet, INTEGER status, INTEGER errorcode) 
 
    This function returns the state of the queried EventSet in status. If the call succeeds, then status is either 
PAPI_RUNNING or PAPI_STOPPED. Return value is PAPI_OK is successful and appropriate error 
code otherwise.  
 
 
C:   int PAPI_stop(int EventSet, long long *values)  
FORTRAN:  PAPI_stop(INTEGER EventSet, INTEGER*8 values , INTEGER errorcode) 
 
    This function terminates the counting of all hardware events contained in EventSet. In addition, the 
counters are read, and stored into values. Returns PAPI_OK if successful, and appropriate error code 
otherwise.  
 
 
 
C:   int PAPI_write(int EventSet, long long *values)  
FORTRAN:  PAPI_write(INTEGER EventSet, INTEGER*8 values , INTEGER errorcode) 
 
    This function assigns the values contained in the values array to the internal counters of the Events 
contained in the EventSet. Returns PAPI_OK if successful, and appropriate error code otherwise.  
 
 
C:   void *PAPI_get_overflow_address(void *context)  
 
    Returns overflow address if successful, appropriate error code otherwise.  
 
 
C:   const PAPI_exe_info_t *PAPI_get_executable_info(void) 
 
    This function returns a pointer to a structure of type PAPI_exe_info_t, which contains path, name, start 
and end addresses for the program's text, data, and bss segments. For the definition of the structure, see 
papi.h Returns pointer to structure of type PAPI_exe_info_t if successful, and NULL if otherwise.  
 
 
 
 
 



C:   const PAPI_hw_info_t *PAPI_get_hardware_info(void) 
FORTRAN:  PAPI_get_hardware_info ( INTEGER ncpu, INTEGER nnodes, INTEGER totalcpus, 

INTEGER  VENDOR, CHAR*40 vendor_string, INTEGER model, CHAR*40 
model_string,  REAL revision, REAL mhz )  

 
    This function returns a pointer to a structure of type PAPI_hw_info_t in C or the variables themselves in 
Fortran, which contains number of CPUs, nodes, vendor number/name for CPU, CPU revision, and clock 
speed. For the definition of the structure, see papi.h. This returns pointer to structure of type 
PAPI_hw_info_t if successful, and NULL if otherwise in C.   Fortran if the call is not successful, ncpu is 
set to 0, otherwise the variables contain the correct information. 
 
 
C:   int PAPI_create_eventset(int *EventSet) 
FORTRAN:  PAPI_create_eventset( INTEGER EventSet, INTEGER errorcode)  
 
    This function allocates and initializes a new EventSet. Returns PAPI_OK if successful, and appropriate 
error code otherwise.  
 
 
C:   int PAPI_destroy_eventset(int *EventSet)  
FORTRAN:  PAPI_destroy_eventset( INTEGER EventSet, INTEGER errorcode) 
 
    This function removes the EventSet from the map of EventSets after verifying that its status is 
 PAPI_STOPPED, and that all events have been removed. Returns PAPI_OK if successful and 
 appropriate error code otherwise.  
 
 
C:   long long PAPI_get_real_usec(void)  
FORTRAN:  PAPI_get_real_usec(INTEGER*8 timeusec ) 
 
    This function returns a time in microseconds, and can be used at the beginning and end of a section of 
code to calculate user time in microseconds for the section. This returns time of type long long if 
successful, appropriate error code otherwise.  
 
 
C:   long long PAPI_get_real_cyc(void) 
FORTRAN: PAPI_get_real_cyc(INTEGER*8 cycount )  
 
    This function returns a read of cycles, and can be used at the beginning and end of a section of code to 
calculate number of cycles elapsed in the section. Returns time of type long long if successful, 
appropriate error code otherwise. 
 



Appendix D. High-level API example programs 
 
C **************************************************************************** 
C 
C fmatrixpapi.f 
C An example of matrix-matrix multiplication and using PAPI high-level to  
C look at the performance. written by Kevin London 
C March 2000 
C **************************************************************************** 
 
      include 'fpapi.h' 
 
      program fmatrixpapi 
      INTEGER i, j, k, numevents, ncols1,ncols2,nrows1,nrows2,check 
      INTEGER errorcode,length 
      CHARACTER*128 errorstring 
C   PAPI standardized event to be monitored 
      INTEGER event(3) 
C   PAPI values of the counters 
      INTEGER*8 values(3) 
      DOUBLE PRECISION p(175,225),q(225,150),r(175,150) 
 
C   Setup default values 
      numevents=0 
      ncols1=175 
      nrows1=225 
      ncols2=225 
      nrows2=150 
      length = 100 
 
C   Open matrix file number 1 for reading 
      OPEN(UNIT=1,FILE='fmt1',STATUS='OLD') 
C   Open matrix file number 2 for reading 
      OPEN(UNIT=2,FILE='fmt2',STATUS='OLD') 
 
C   Total floating point operations 
      event(1) = PAPI_FLOPS 
C   Level 1 cache misses 
      event(2) = PAPI_L1_TCM 
C   Level 2 cache misses 
      event(3) = PAPI_L2_TCM 
      num_events = 3 
 
C   See how many hardware events at one time are supported 
      call PAPI_num_events( numevents ) 
      if ( numevents .LT. 3 ) then 
          print *, 'Can only monitor ', num_events, ' events.' 
          num_events = numevents 
      end if 
      print *, 'number of hardware counters supported: ', numevents 
 
C   matrix 1: read in the matrix values 
      do j=1,ncols1 
        do i=1, nrows1 
          READ (1,*) p(j,i) 



        end do 
      end do 
 
C   matrix 2: read in the matrix values 
      do j=1,ncols2 
        do i=1, nrows2 
          READ (2,*) q(j,i) 
        end do 
      end do 
 
C  Initialize the result matrix  
      do i=1,nrows1 
        do j=1, ncols2 
           r(i,j)=0 
        end do 
      end do 
 
C  Set up the counters 
      call PAPI_start_counters( event, num_events, check) 
      if  ( check .LT. 0 ) then 
        call PAPI_perror( check, errorstring, length, errorcode) 
        print *, errorstring 
        stop 
      end if 
 
C  Clear the counter values 
      call PAPI_read_counters(values, num_events,check) 
      if ( check .LT. 0) then 
        call PAPI_perror( check, errorstring, length, errorcode) 
        print *, errorstring 
        stop 
      end if 
 
C  Compute the matrix-matrix multiplication 
      do i=1,ncols1  
       do j=1,nrows2  
         do k=1,nrows1  
           r(i,j)=r(i,j) + p(i,k)*q(k,j) 
         end do 
       end do 
      end do 
 
C  Stop the counters and put the results in the array values  
      call PAPI_stop_counters(values,num_events,check) 
      if ( check .LT. 0 ) then 
        call PAPI_perror( check, errorstring, length, errorcode) 
        print *, errorstring 
        stop 
      end if 
 
      print *, 'FLOPS: ', values(1) 
      if ( num_events .GT. 1 ) then 
        print *, 'Total Level 1 Data cache misses: ', values(2) 
      endif 
      if ( num_events .GT. 2 ) then 
         print *, 'Total Level 2 Data cache misses: ', values(3) 



      endif 
      return 
      end



Appendix E. Low-level API example program 
 
C **************************************************************************** 
C 
C matrixpapi.f 
C An example of matrix-matrix multiplication and using PAPI low-level to  
C look at the performance. written by Kevin London 
C March 2000 
C **************************************************************************** 
 
      include 'fpapi.h' 
 
      program fmatrixlowpapi 
      INTEGER i, j, k, ncols1,ncols2,nrows1,nrows2,check 
      INTEGER EventSet, length 
      CHARACTER*128  errorstring  
      CHARACTER*40 vstring, mstring 
C   PAPI standardized event to be monitored 
      INTEGER event(3) 
C   PAPI values of the counters 
      INTEGER*8 values(3) 
      DOUBLE PRECISION p(175,225),q(225,150),r(175,150) 
      INTEGER*8 starttime,stoptime 
      DOUBLE PRECISION finaltime 
      INTEGER ncpu,nnodes,totalcpus,vendor,model 
      REAL revision, mhz 
 
      numevents=0 
      ncols1=175 
      nrows1=225 
      ncols2=225 
      nrows2=150 
      EventSet=-1 
      starttime=0 
      stoptime=0 
      length=100 
 
C   Open matrix file number 1 for reading 
      OPEN(UNIT=1,FILE='fmt1',STATUS='OLD') 
C   Open matrix file number 2 for reading 
      OPEN(UNIT=2,FILE='fmt2',STATUS='OLD') 
 
C   Total floating point operations 
      call PAPI_add_event(EventSet,PAPI_FLOPS,check) 
      call PAPI_add_event(EventSet,PAPI_FLOPS,check) 
      if ( check .LT. 0 ) then 
        call PAPI_perror( check, errorstring, length, errorcode) 
        print *, errorstring 
        stop 
      endif  
 
C   Level 1 cache misses 
      call PAPI_add_event(EventSet,PAPI_L1_TCM,check) 
      if ( check .LT. 0 ) then 
        call PAPI_perror( check, errorstring, length, errorcode) 



        print *, errorstring 
        stop 
      endif  
 
C   Level 2 cache misses 
      call PAPI_add_event(EventSet,PAPI_L2_TCM,check) 
      if ( check .LT. 0 ) then 
        call PAPI_perror( check, errorstring, length, errorcode) 
        print *, errorstring 
        stop 
      endif  
 
C   Grab the hardware info 
      call PAPI_get_hardware_info( ncpu, nnodes, totalcpus, vendor, 
     .   vstring, model, mstring, revision, mhz ) 
      print *, 'A', totalcpus, ' CPU ', mstring, ' at', mhz, 'Mhz.' 
      print *, ncpu, nnodes, totalcpus, vendor, vstring, model,  
     .   mstring, revision, mhz 
C   See how many hardware events at one time are supported 
      call PAPI_num_events( numevents ) 
 
      if ( numevents .LT. 3 ) then 
          print *,'This example program requries the architecture ', 
     .    'to support 3 simultanious hardware events...shutting down.' 
      stop 
      end if 
 
      print *, 'number of hardware counters supported: ', numevents 
 
C   matrix 1: read in the matrix values 
      do j=1,ncols1 
        do i=1, nrows1 
          READ (1,*) p(j,i) 
        end do 
      end do 
 
C   matrix 2: read in the matrix values 
      do j=1,nrcols2 
        do i=1, nrows2 
          READ (2,*) q(j,i) 
        end do 
      end do 
 
C  Initialize the result matrix  
      do i=1,nrows1 
        do j=1, ncols2 
           r(i,j)=0 
        end do 
      end do 
 
C  Grab the beginning time 
      call PAPI_get_real_usec( starttime ) 
  
C  Start the event counters 
      call PAPI_start( EventSet, check ) 
      if ( EventSet .LT. 0 ) then 



        print *, 'Error starting counters' 
        stop 
      end if 
 
C  Compute the matrix-matrix multiplication 
      do i=1,ncols1  
       do j=1,nrows2  
         do k=1,nrows1  
           r(i,j)=r(i,j) + p(i,k)*q(k,j) 
         end do 
       end do 
      end do 
 
C  Stop the counters and put the results in the array values  
      call PAPI_stop(EventSet,values,check) 
      if ( check .LT. 0 ) then 
        print *, 'Error stopping counters' 
        stop 
      end if 
 
      call PAPI_get_real_usec( stoptime ) 
      finaltime = (stoptime/1000000.0) - (starttime/1000000.0) 
 
      print *, 'Time: ', finaltime 
      print *, 'FLOPS: ', values(1) 
      print *, 'Total Level 1 Data cache misses: ', values(2) 
      print *, 'Total Level 2 Data cache misses: ', values(3) 
      return 
      end 


